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On the Relationship Between ACORN Generators and Pascal’s Triangle 

 

Roy S Wikramaratna 

Abstract 

The Additive Congruential Random Number (ACORN) generator represents an approach to 

generating uniformly distributed pseudo-random numbers which is straightforward to 

implement for arbitrarily large order and modulus (where the modulus is a sufficiently large 

power of 2, typically up to 2120); it has been demonstrated in previous papers to give rise to 

sequences with long period which, for the k-th order ACORN generator with modulus a 

power of 2, can be proven from theoretical considerations to approximate in a particular 

defined sense to the desired properties of uniformity in up to k dimensions. 

This report investigates the mathematical relationship between the ACORN generators and 

Pascal’s triangle.  It turns out that if the (k+1)-th diagonal of Pascal’s triangle is considered 

modulo a large integer M, then it is equivalent to a k-th order ACORN sequence with seed 

equal to 1 and initial values all zero; normalising this sequence to the unit interval (by 

dividing each term in the sequence by the modulus M) leads to a sequence that approximates 

to being uniformly distributed on the unit interval. The report goes on to demonstrate an 

augmented form of Pascal’s triangle that can be shown to encapsulate all the possible 

ACORN generators. 

Demonstration of this new relationship, between the ACORN generators and Pascal’s 

triangle, does not lead to any significant algorithmic developments in terms of generating 

ACORN sequences (this is due to the inherent speed and efficiency of the existing ACORN 

algorithm). Having said this, Pascal’s triangle has been shown over the years to possess many 

interesting and diverse mathematical properties, and the present work has established the 

existence of some novel and previously unknown mathematical properties associated both 

with Pascal’s triangle itself and with certain generalisations thereof. 
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1 INTRODUCTION 

The Additive Congruential Random Number (ACORN) generator is a method for generating 

uniformly distributed pseudo-random numbers which gives rise to sequences with long 

period which can be proven from theoretical considerations to approximate to uniformity in 

any specified number of dimensions. Extensive empirical testing has previously 

demonstrated the excellent statistical performance of the ACORN generators with 

appropriately chosen parameters over a very wide range of initialisations. 

In this report we investigate some relationships that exist between ACORN sequences and 

the diagonals of Pascal’s triangle.  In particular, we show that any ACORN sequence having 

seed equal to 1 and initial values all zero is equivalent to a corresponding diagonal of 

Pascal’s triangle calculated modulo M and normalised to the unit interval by dividing all the 

resulting terms by M (where M is the modulus of the ACORN sequence).  In addition, we 

define a modified form of Pascal’s triangle (augmented by an extra row of ‘initial’ terms) 

which encapsulates all ACORN sequences, irrespective of the choice of seed and initial 

values, in a similar way. We note that it had never been suggested that Pascal’s triangle had 

any relation to a potential source of pseudo-random numbers prior to the brief observation 

made in 2019 by Wikramaratna [1]; the current work expands on those ideas. 

2 OVERVIEW - ACORN SEQUENCES AND ACORN GENERATORS 

Let k be a finite, strictly positive integer. A k -th order ACORN sequence is defined from an 

integer modulus M, an integer seed Y 0
0 satisfying 0 < Y 0

0 < M and an arbitrary set of k 

integer initial values Y m0, m = 1, ..., k, each satisfying 0  Y m0  M by the equations 

 𝑌 = 𝑌    𝑛 ≥ 1 (1) 

 𝑌 = [𝑌 + 𝑌 ]    𝑛 ≥ 1, 𝑚 = 1, … , 𝑘 (2) 

where by [Y ]mod M we mean the (integer) remainder on dividing Y by M.  

The k -th order Additive Congruential Random Number (ACORN) generator is defined by 

Wikramaratna [2,3] from equations (1) and (2) together with the observation that the 

sequence of numbers Y kn can be normalised to the unit interval by dividing by M 

 𝑋 = 𝑌 /𝑀   𝑛 ≥ 1 (3) 

The numbers X kn defined by equations (1) - (3) approximate to being uniformly distributed 

on the unit interval in up to k dimensions, provided a few simple constraints on the initial 

parameter values are satisfied. In short, the modulus M needs to be a prime power, with 
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powers of 2 offering the most straightforward implementation, while the seed Y 00 and the 

modulus should be chosen to be relatively prime (two numbers are said to be relatively prime 

if they have no prime factors in common, which means that their greatest common divisor is 

1). This is the approach that we have adopted in most of our previous experiments with the 

ACORN generator, and it appears to work very successfully. 

The original implementation proposed in [2] used real arithmetic modulo one, calculating the 

X kn directly. This implementation suffered from a number of conceptual and practical 

limitations (in particular, the sequences generated with any specific initialisation could not be 

guaranteed reproducible on different hardware or with different compilers, although the 

statistical properties of the sequences were unaffected). These limitations could be overcome 

[3] through the use of the integer implementation based on equations (1) – (3). Theoretical 

analysis given by Wikramaratna [3] has shown that the numbers Y mn are of the form 

 𝑌 = ∑ 𝑌 𝑍  (4) 

where for any integer values of a (non-negative) and b (positive) we define Za
b by 

 𝑍 =
( )!

!( )!
 (5) 

More extensive theoretical analysis and empirical testing of the algorithm have been 

described in subsequent papers, including [4] and [5]. 

From a theoretical viewpoint [4] the ACORN generator was shown to be a very particular 

special case of a multiple recursive generator; when this formulation was written in a 

specified matrix form, it led in turn to the discovery of some special matrices (called centro-

invertible matrices) which have some interesting and unusual properties [6]. The theoretical 

analysis in [5] led to a proof that a k-th order ACORN generator with modulus 230p 

approximates to being k-distributed in a particular sense that was defined in the paper. 

Empirical tests carried out previously by the author, making use of the Diehard statistical test 

suite, Marsaglia [7], have been reported in [4]. Further empirical testing was carried out in 

2008 and reported by the author [5], using the Version 0.6.1 of the TestU01 package 

described by L’Ecuyer and Simard [8]. More recently, empirical testing has been carried out 

using the most current Version 1.2.3 of the TestU01 package as reported in [1] and [9]. That 

work has since been systematically extended to ACORN generators with much wider choices 

of initialisations and Wikramaratna [10,11] presented extensive results obtained with 

TestU01 for ACORN with orders between 8 and 15, leading to two conjectures concerning 

the wide range of modulus, order and initial conditions under which ACORN sequences 

might be relied on to pass all the tests in the TestU01 BigCrush test suite. Further testing with 



ACORN Generators and Pascal’s Triangle      REAMC Report-005(2022) 
Issue 1, November 2022  

Copyright © 2022 REAMC® Limited. 4  

even larger orders (selected values of the order between 16 and 101) is ongoing and a further 

report is in preparation; this is expected to be issued early in 2023 [12]. 

Another recent paper by Wikramaratna [13] addressed the periodicity of ACORN sequences 

for any specified order, modulus and any choice of seed that is relatively prime with the 

modulus. As an example, every ACORN generator with order at least 8, modulus 2120 and 

any choice of odd seed has a period length in excess of 2123. This period was already far in 

excess of the maximum period that might be required in the largest conceivable 

computationally practicable (using hardware available in 2020) application requiring a source 

of uniformly distributed pseudo-random numbers. We note that the ACORN algorithm 

extends naturally and very easily to even longer period lengths simply by increasing the 

modulus to a larger power of 2. 

See also further discussion on the website http://acorn.wikramaratna.org, which includes a 

more comprehensive list of relevant ACORN references as well as links to downloadable 

versions of those references. Recent ACORN references (including this report) are available 

for download from the REAMC Limited website, https://www.reamc-limited.com. 

3 PASCAL’S TRIANGLE 

Pascal’s triangle has been widely discussed and referenced both on the web and in school and 

university texts; see for example the article in the online Encyclopaedia Britannica [14].  

Pascal’s triangle is named for Blaise Pascal, a 17th century French mathematician who 

studied and documented many of its properties although it is believed to have been known as 

early as the 11th century in both China and Persia.  Pascal’s triangle is known to possess 

many interesting mathematical properties. A few specific examples of such properties include 

the fact that the rows of the triangle contain the binomial coefficients, while the ‘semi-

diagonals’ sum to give the terms of the Fibonacci sequence; further, it can be shown (by 

consideration of the entries in Pascal’s triangle, modulo 2) that a Serpinski gasket is created if 

all entries containing odd numbers are shaded black and all entries containing even numbers 

are shaded white. 

Pascal’s triangle is conceptually very simple and straightforward to construct, see Figure 1.  

It should be noted that the numberings of the rows, diagonals and anti-diagonals of the 

triangle that have been adopted in this report are particular to this work (by analogy with the 

numbering adopted in the definition of ACORN generators); in certain other contexts it may 

prove more convenient to adopt different numbering schemes. Calculation of the terms in 

Pascal’s triangle proceeds as follows. The entries in diagonal 0 and anti-diagonal 1 (which 

correspond to the first and last entries in each row of the triangle) are all set equal to 1.  Each 

of the remaining entries in the triangle can be calculated as the sum of the two entries to the 
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left and right in the preceding row of the triangle; all entries in the triangle can be calculated 

by working systematically downwards from row 3 of the triangle, noting that the first row 

contains just a single entry equal to one while the second row contains two entries, both equal 

to 1.  The arrows within the triangle in Figure 2 show which two entries in the row above 

must be summed to derive each subsequent entry.  Note that although Figure 1 only includes 

the first six rows of the triangle, the process can be repeated to generate further rows of the 

triangle ad infinitum. It is also worth noting that the entries in any given diagonal of the 

triangle can be calculated as long as the terms in the previous diagonal have been calculated 

to the same point, without needing to calculate any terms in any of the later diagonals, nor 

any of the later terms in the earlier rows. In this way it is possible to calculate the just the 

diagonals 0 to k, without calculating any of the terms in diagonal k+1 or any subsequent 

diagonal. 

 

 
Figure 1 Rows 1 to 6 of Pascal’s Triangle 
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Another way of generating the entire triangle is afforded by augmenting the triangle as in 

Figure 2 through inclusion of anti-diagonal 0, which consists of a single 1 at the top followed 

by a string of zeroes (shown in the circles on the left side of Figure 2).  Entries in diagonal 0 

of the triangle can be obtained by noting that the first entry is equal to the top entry of anti-

diagonal 0 (equal to 1) and all subsequent entries can be obtained by copying the previous 

entry (illustrated by the single arrow joining successive entries in diagonal 1).  All other 

entries in the triangle can be obtained by summing the two entries to the left and right in the 

previous row, noting that entries in anti-diagonal 1 are calculated by summing the previous 

entry in anti-diagonal 1 and the corresponding entry from anti-diagonal 0 (which is not 

strictly part of the Pascal triangle). We observe that the result in this case corresponds exactly 

to Pascal’s triangle. 

Figure 2 shows the first six rows of the triangle, augmented by the numbers in circles which 

are labelled “Anti-Diagonal 0”. As discussed, the augmentation is not itself part of the 

triangle; the augmentation, together with the numbering that we have adopted for the 

diagonals and anti-diagonals (in which the diagonals of the triangle are numbered from zero, 

while the anti-diagonals of the triangle are numbered from 1) will be useful in establishing 

the analogy with the ACORN sequences. 

It will also be of interest in this work to consider Pascal’s triangle modulo an integer M; this 

triangle is calculated in an entirely analogous way, but all the additions are carried out 

modulo M.  It is worth noting that the upper part of the triangle is unchanged until the first 

row containing one or more values that are greater than or equal to M. Thus, the first six rows 

of the triangle (as shown in Figure 2) would remain unchanged for any choice of M greater 

than or equal to 11.  By contrast, a choice of M = 8 would change the two entries that are 

equal to 10 (in row 6) to the value of 10 modulo 8 which is equal to 2; all other entries in the 

first six rows would be unchanged. The values of M that will be of particular interest to us in 

this work will be much larger, specifically large integer powers of 2 (for example, we will 

refer to and make use of some existing empirical results concerning the uniformity of 

ACORN sequences having modulus M=2120, after normalisation to the unit interval). 
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Figure 2 Rows 1 to 6 of Pascal’s Triangle (augmented on the left by cells labelled as “Anti-Diagonal 0” which 
includes the row labelled as “Row 0”; as discussed in text, inclusion of this augmentation helps to illustrate the 
analogies with ACORN sequences while still preserving the structure of the triangle unchanged) 

We can further generalise Pascal’s triangle modulo M by permitting the choice of different 

values for the initialisation of the anti-diagonal zero.  In the generalised case the uppermost 

entry of the anti-diagonal 0 can take any non-zero positive integer value less than M, while 

all other values on the anti-diagonal 0 can be either zero or positive integers strictly less than 

M.  This is illustrated in Figure 3. The entries in Pascal’s triangle would usually be referenced 

by the row number and the position in the row; however, it will prove more convenient for 

our purpose to label the entries Pi
j with a superscript i to denote the diagonal number and a 

subscript j to denote the row number. The arrows within the triangle again show which two 

entries must be summed modulo M to derive each subsequent entry; although the figure only 

shows the first six rows of the triangle, the process can be repeated to generate further terms 

of the triangle ad infinitum. 
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We will now proceed to demonstrate the direct analogy that exists between any k-th order 

ACORN sequence and the k-th diagonal of a corresponding generalised Pascal’s triangle 

modulo M.  

The simplest way to demonstrate the analogy is as follows. Consider a k-th order ACORN 

generator having modulus M, seed Y 0
0 satisfying 0 < Y 0

0 < M and k integer initial values 

Y m0, m = 1, ..., k, each satisfying 0  Y m0  M .  Equations (1) and (2) can then be represented 

by the diagonals 0 to k of a generalised Pascal triangle modulo M, as shown in Figure 3, if we 

set P m0= Y m0 for m = 0,..., k; we note that the P m0 with m>k can be set arbitrarily to zero (or 

any other positive value less than M) as they have no impact on any of the first k diagonals of 

the triangle.  It now follows that if the entries in the k-th diagonal are normalised to the unit 

interval (by dividing each value by the modulus M) the result is precisely the sequence 

generated by the corresponding k-th order ACORN generator, as defined in equation (3). 

 

 
Figure 3 Rows 0 to 6 of generalised Pascal’s triangle, modulo M 
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4 DISCUSSION AND CONCLUSIONS 

The first suggestion that Pascal’s triangle may have had any mathematical relationship to a 

potential source of pseudo-random numbers was a brief passing observation made in 2019 by 

Wikramaratna [1].  In the current work, we have demonstrated a one-to-one correspondence 

that exists between the ACORN sequences and the diagonals of what we have called a 

generalised Pascal’s triangle modulo M. Existing results obtained for ACORN sequences can 

therefore be applied directly to the diagonals of a generalised Pascal’s triangle modulo M 

with an appropriately chosen initialisation of the anti-diagonal 0. 

For any appropriate choice of M, the resulting sequence (normalised to the unit interval by 

dividing each of the terms by M) can therefore be shown to be periodic and to approximate to 

uniformly distributed on the unit interval. It should be noted that the period length for these 

sequences can be calculated by direct analogy with the existing results for ACORN 

sequences, see Wikramaratna [13]. 

In particular, for modulus M = 2120 and if the seed Y0
0 is an odd integer, chosen randomly and 

lying between 0 and M, together with an arbitrary set of initial values, then any resulting 

ACORN generator of order eight or more satisfies all the conditions for the conjectures in the 

references [10, 11], and so the same conjectures can also be applied to the diagonals of the 

generalised Pascal’s triangle with the analogous initialisation and normalisation.  In 

summary, the conjectures state that any ACORN sequence satisfying these conditions will 

almost certainly pass all the tests in the TestU01 BigCrush test suite. 

This means that a generalised Pascal’s triangle of this form might in principle be used as the 

basis for a pseudo-random number generator that approximates to uniformly distributed on 

the unit interval.  Having said this, it should be noted that any such generator is exactly 

equivalent to a corresponding ACORN generator, and that the existing computational 

algorithm developed for the ACORN generators is much more efficient than trying to first 

calculate the terms of a generalised Pascal’s triangle modulo M. In consequence, the 

relationship that has been discovered between ACORN sequences and the generalised 

Pascal’s triangle has turned out to be primarily of theoretical interest rather than possessing 

any particular computational significance.  
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