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Periodicity of ACORN Sequences with Arbitrary Order and Modulus 

Roy S Wikramaratna 

Abstract 

The Additive Congruential Random Number (ACORN) generator represents an approach to 

generating uniformly distributed pseudo-random numbers which is straightforward to 

implement for arbitrarily large order and modulus (where the modulus is a sufficiently large 

power of 2, typically up to 2120); it has been demonstrated in previous papers to give rise to 

sequences with long period which, for the k-th order ACORN generator with modulus a 

power of 2, can be proven from theoretical considerations to approximate in a particular 

defined sense to the desired properties of uniformity in up to k dimensions. 

In this paper we state and prove a theorem concerning the exact period length for an ACORN 

sequence with any given order and any integer modulus (which may either be a prime power, 

or a composite modulus with two or more different prime factors each raised to a possibly 

different power) for cases where the seed and modulus are assumed to be relatively prime. 

For those cases where the modulus is a prime number or has just one single prime factor 

raised to an integer power, we show that this theorem is exactly equivalent to an existing, but 

previously unproven, conjecture concerning the periodicity. The theorem also extends the 

periodicity results beyond those in the conjecture, to include those cases where the modulus 

is composite, having two or more prime factors each of which might be raised to a different 

integer power. 
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1 OVERVIEW - ACORN SEQUENCES AND ACORN GENERATORS 

Let k be a finite, strictly positive integer. A k -th order ACORN sequence is defined from an 

integer modulus M, an integer seed Y 0
0 satisfying 0 < Y 0

0 < M and an arbitrary set of k 

integer initial values Y m0, m = 1,..., k, each satisfying 0  Y m0  M by the equations 

 𝑌
 = 𝑌

ିଵ   𝑛 ≥ 1 (1) 

 𝑌
 = [𝑌ିଵ

 + 𝑌
ିଵ]୫୭ୢெ   𝑛 ≥ 1, 𝑚 = 1, … , 𝑘 (2) 

where by [Y ]mod M we mean the (integer) remainder on dividing Y by M. Note that in this 

paper we will sometimes use a compressed notation where the use of square brackets around 

a vector or matrix means that each individual component of the relevant vector or matrix is 

evaluated and the result taken modulo M. 

The k -th order Additive Congruential Random Number (ACORN) generator is defined by 

Wikramaratna [1,2] from equations (1) and (2) together with the observation that the 

sequence of numbers Y kn can be normalised to the unit interval by dividing by M 

 𝑋
 = 𝑌

/𝑀   𝑛 ≥ 1 (3) 

It turns out that the numbers X kn defined by equations (1) - (3) approximate to being 

uniformly distributed on the unit interval in up to k dimensions, provided a few simple 

constraints on the initial parameter values are satisfied. In short the modulus M needs to be a 

a prime power, with powers of 2 offering the most straightforward implementation, while the 

seed Y 00 and the modulus should be chosen to be relatively prime (two numbers are said to 

be relatively prime if they have no prime factors in common, which means that their greatest 

common divisor is 1). This is the approach that we have adopted in most of our previous 

experiments with the ACORN generator, and it appears to work very successfully. 

The original implementation proposed in [1] used real arithmetic modulo one, calculating the 

X kn directly. This implementation suffered from a number of conceptual and practical 

limitations (in particular, the sequences generated with any specific initialisation could not be 

guaranteed reproducible on different hardware or with different compilers, although the 

statistical properties of the sequences were unaffected). These limitations could be overcome 

[2] through the use of the integer implementation based on equations (1) – (3). Theoretical 

analysis given by Wikramaratna [2] has shown that the numbers Y mn are of the form 

 𝑌
 = ൣ∑ 𝑌

𝑍ି



ୀ ൧

୫୭ୢெ
 (4) 

where for any integer values of a (non-negative) and b (positive) we define Za
b by 
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 𝑍
 =

(ାିଵ)!

!(ିଵ)!
 (5) 

More extensive theoretical analysis and empirical testing of the algorithm have been 

described in subsequent papers, including [3] and [4]. 

From a theoretical viewpoint, it turned out [3] that the ACORN generator was a very 

particular special case of a multiple recursive generator; when this formulation was written in 

a specified matrix form, it led in turn to the discovery of some special matrices (called 

centro-invertible matrices) which have some interesting and unusual properties [5].  The 

theoretical analysis in [4] led to a proof that a k-th order ACORN generator with modulus 

230p approximates to being k-distributed in a particular sense that was defined in the paper. 

Empirical tests carried out previously by the author, making use of the Diehard statistical test 

suite, Marsaglia [6], have been reported in [3].  Further empirical testing was carried out in 

2008 and reported by the author [4], using the Version 0.6.1 of the TestU01 package 

described by L’Ecuyer and Simard [7]. More recently, further empirical testing has been 

carried out using the most current Version 1.2.3 of the TestU01 package as reported in [8]; 

that work has continued and will be reported in more detail in Wikramaratna [9]. 

Further discussion of ACORN sequences is available at the ACORN website 

http://acorn.wikramaratna.org/index.html. Included on that website there is a page 

http://acorn.wikramaratna.org/references.html with a more comprehensive list of relevant 

ACORN references as well as links, pointing either to downloadable versions of the 

references, or to other sites where those references can be accessed and downloaded. 

2 EXISTING CONJECTURE ON PERIODICITY 

A periodic sequence is one in which the values taken by terms in the sequence eventually 

begin to repeat themselves; in broad terms the period length is the shortest interval over 

which the sequence recurs. About a decade ago Wikramaratna [3] proposed the following 

conjecture concerning the period length of ACORN sequences with prime power modulus: 

CONJECTURE 1. Let X kn be a k -th order ACORN sequence, defined by equations (1)-(3), 

with modulus equal to a prime power, say M = q t, where q is a prime and t is a positive 

integer and suppose that the seed and modulus are chosen to be relatively prime. Then the 

sequence X kn, k = 1, …, n will have a period length equal to q iM = q i+t, where i is the largest 

integer such that q i ≤ k.  
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The conjecture was based on the results of numerical experiments that were undertaken with 

a wide range of choices of modulus, seed and initial value; until now there has been no 

published proof. 

The following sections of the present paper are devoted to the development of some relevant 

background, followed by the statement and proof of a theorem concerning the periodicity of 

ACORN sequences having arbitrary modulus, where the seed is chosen such that it is 

relatively prime with the modulus. For those cases where the modulus is either a prime 

number or a prime raised to an integer power, the theorem is exactly equivalent to the 

corresponding cases in the conjecture – thus the proof of the theorem is also a proof of the 

conjecture. The theorem also extends the result to the general case where the modulus has 

two or more distinct prime factors, each raised to a (possibly different) integer power. 

3 MATRIX FORMS OF ACORN EQUATIONS 

It should be observed that there is more than one way in which the ACORN equations (1) – 

(3) can be represented in matrix form. The form that will be adopted in this paper is 

particularly well suited to the analysis of periodicity and specifically to the proof of the 

theorem below. However, we note that it is different from the form of the equations that was 

adopted in [3] and [5], where the ACORN generator was viewed as a special case of a 

multiple recursive generator - this required a matrix of size k by k (rather than k+1 by k+1 as 

in equation (7) of this paper) and different structure and leads to a matrix with different 

properties. In particular we note that in [3] the resulting matrix turned out to be centro-

invertible (which means [5] that its inverse can be found simply by reversing the order of 

both the rows and columns of the matrix, equivalent to rotating all elements of the matrix 

through 180º about the mid-point of the matrix). It will be clear from an inspection of 

equation (7) below that this is not the case with the alternative matrix form of the equations 

that is considered in this paper. 

For any given value of k, define Lk to be the (k+1) by (k+1) lower triangular matrix with all 

entries equal to 1 both on the diagonal and in the lower triangle, while all entries in the upper 

triangle are equal to zero. Let yn be the (k+1) vector with i-th component equal to [Yi-1
n]. 

Equations (1) and (2) for a k-th order ACORN generator can then be rewritten in matrix form 

as follows 

 𝐲 = ([𝑌
]୫୭ୢெ, [𝑌ଵ

]୫୭ୢ , … , [𝑌
]୫୭ୢெ)் 

 = [𝐋𝐲ିଵ]୫୭ୢெ = [(𝐋)𝐲]୫୭ୢெ               (6) 
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We observe that, for each k, the matrix Lk is an invertible matrix with determinant equal to 1; 

its inverse is the (k+1) by (k+1) lower triangular matrix with all entries equal to 1 on the 

diagonal, equal to -1 on the lower “off-diagonal” with unit offset, while all remaining entries 

in the lower triangle and all entries in the upper triangle are zero. For example, for k=3 

 𝐋ଷ = ቌ   

1 0
1 1

0 0
0 0

1 1
1 1

1 0
1 1

   ቍ     (𝐋ଷ)ିଵ = ቌ
  

  1    0
−1    1

  0  0
  0  0

     0  −1
     0     0

  1 0
−1  1

  ቍ (7) 

If we write 

 [(𝐋)]୫୭ୢெ = ൫𝐿(,)
 ൯ (8) 

where on the right hand side of this equation the terms ),( qp
n
kL  represent the individual 

components of the matrix (modulo M), the indices k and n identify the matrix which is being 

considered and the power to which it is raised and the subscript terms (p, q) are respectively 

the row and column indices, each running from 1 to (k+1); then, comparing terms between 

equations (4), (6) and (8), we obtain 

         𝐿(,)
 = 0                                                                if 𝑝 < 𝑞 

 𝐿(,)
 = ൣ𝑍ିଵ

ିାଵ൧
୫୭ୢெ

= [𝑍ି
]୫୭ୢெ  

                              = ቂ
(ାିିଵ)!

(ି)!(ିଵ)!
ቃ

୫୭ୢெ
                                 if 𝑝 ≥ 𝑞 (9) 

where the meaning of Za
b is as defined previously in equation (5). It should be noted that the 

right hand side of equation (9) is a function of (p-q), so that each matrix (Lk)
n is a lower 

triangular matrix with constant values along the diagonal (equal to 1) and with a (possibly 

different) constant value along each lower off-diagonal with fixed offset. 

4 PERIOD LENGTH FOR ACORN SEQUENCES 

THEOREM 1. Let X kn be a k -th order ACORN sequence, defined by equations (1) and (2), 

and then normalised to the unit interval as in equation (3), with modulus 

 𝑀 = ∏ (𝑞)௧ೝ௦
ୀଵ  (10) 

where each qr is a prime (ordered such that qr < qr+1), each tr is a positive integer and suppose 

that the seed and modulus are chosen to be relatively prime. Then the sequence X kn, 

k = 1,…, n will have a period length equal to 

 𝑃 = ∏ (𝑞)ೝ𝑀௦
ୀଵ  (11) 
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where for each r, ir is the largest integer such that 

 (𝑞)ೝ ≤ 𝑘 (12) 

Proof 

The proof is in two parts. 

(i) In the first part it is proved that, provided the seed and modulus are relatively prime, 

then a necessary and sufficient condition for the period to be N is that [(Lk)
N]modM=I (where I 

is the k+1 by k+1 identity matrix) and [(Lk)
N]modM≠I for any n<N.  

The sufficiency of this condition is obvious: from equation (6) we obtain 

 𝐲ேା = [(𝐋)ே]୫୭ୢெ𝐲 = 𝐈𝐲 = 𝐲 (13) 

This holds for all r and N is the smallest value for which it holds, which is the definition of 

the period length. 

Necessity is also clear. Suppose (assumption A) that [(Lk)
N]modM≠I; we know from (9) that 

𝐿(ଵ,ଵ)
ே = 1 and there must be at least one other non-zero element in the first column of 

[(Lk)
N]modM (if not, this would contradict assumption A - since each lower off-diagonal has 

constant values). Suppose that the second non-zero element is in row t, so that 𝐿(௧,ଵ)
ே  is the 

second non-zero element in the first column of the matrix. From an inspection of equation (9) 

it can be seen that in this case the t-th row of the matrix can have only two non-zero 

elements; thus if we write Yt-1
0 for the t-th element of the vector y0 then in this case the t-th 

row of the matrix equation (6) reduces to 

 𝐿(௧,ଵ)
ே 𝑌

 + 𝐿(௧,௧)
ே 𝑌௧ିଵ

 = 𝑌௧ିଵ
 (14) 

and since the terms on the diagonal are all equal to 1, this in turn requires 

 𝐿(௧,ଵ)
ே 𝑌

 = ൫1 − 𝐿(௧,௧)
ே ൯𝑌௧ିଵ

 = 0 (15) 

Remembering that this equation must be satisfied modulo M, and that the seed Y0
0 and the 

modulus are relatively prime, this equation can only be satisfied if 𝐿(௧,ଵ)
ே is divisible by M 

and therefore equal to zero modulo M.  This contradicts assumption A, proving that the 

condition [(Lk)
N]modM=I is necessary. 

This completes the first part of the proof. 

(ii) In the second part of the proof we will use mathematical induction on the order k of 

the generator, together with the result of the first part of the proof, to prove the theorem. 
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Consider first the cases where p-q=1 (when k=1 this means that p=2 and q=1) 

 𝑍ଵ
 = 𝑛 (16) 

Choosing n=M gives the smallest solution with equation (16) equal to zero modulo M.  Hence 

the period for a first-order ACORN sequence must be equal to M, provided that the seed and 

the modulus are relatively prime. This proves the theorem for k=1.  

Now suppose that the theorem holds for all k less than or equal to K.  Suppose that the period 

length for the K-th order sequence is nKM.  Then the theorem will be proved if we can show 

that (a) nK+1 is equal to PnK whenever K+1 is a power of a prime P which is a factor of M; (b) 

nK+1 is equal to nK whenever K+1 is a power of a prime P which is not a factor of M; (c) nK+1 

is equal to nK whenever K+1 is a composite number, ie has two or more different prime 

factors which may each be raised to any integer power greater than or equal to 1.  We will 

consider each of these cases separately in the relevant paragraphs below. 

We know that (K+1) can be written in the form (K+1)=ab where all the prime factors of a are 

also prime factors of M and where b and M are relatively prime (and where we allow the 

possibility that either a or b may be equal to 1; we observe that a and b cannot both be 1 by 

the induction hypothesis). 

Let T be a positive integer.  We can write    

 𝑍ାଵ
಼்ெ =

(಼்ெା)!

(ାଵ)!(಼்ெିଵ)!
=

(಼்ெ)(಼்ெାଵ)…(಼்ெା)

(ାଵ)!
  

              = 
(಼்ெ)

(ାଵ)
𝑍

಼ெାଵ =
(಼்ெ)



಼
಼ಾశభ


           (17) 

This equation holds for any integer value of T, and clearly still holds if both sides are 

evaluated modulo M.  We now consider three options depending on the value of K+1. 

(a) Suppose K+1 is a power of a prime, and the prime (which we shall call P) is a factor 

of M.  

By assumption, this requires b=1.  By the induction hypothesis, we know that 
ൣ𝑍

಼ெାଵ൧
୫୭ୢெ

= [𝑍
ଵ]୫୭ୢெ = 1 and so in this case equation (17), when evaluated 

modulo M, reduces to 

 ൣ𝑍ାଵ
಼்ெ൧

୫୭ୢெ
= ቂ

(಼்ெ)


ቃ

୫୭ୢெ    (18) 

By the induction hypothesis when K+1 is a prime power, nK is divisible by a/P, but 

not by a (since K+1=a=Pt for some integer t, the largest power of P less than or equal 
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to K must be 𝑃௧ିଵ = 𝑎/𝑃). Hence T=P is the smallest value of T such that equation 

(18) is equal to zero.  We have shown that in this case nK+1=PnK, as required for the 

theorem. 

(b) Suppose K+1 is a power of a prime (which we shall call P), but the prime is not a 

factor of the modulus M.  

In this case a=1 and b has just a single prime factor raised to some power. Suppose we 

put a=1 and also set T=1 in equation (17) 

𝑍ାଵ
಼ெ =

(𝑛𝑀)

(𝐾 + 1)
𝑍

಼ெାଵ                         

     = 𝑛𝑀 ൬
಼

಼ಾశభ


൰ (19) 

The left hand side of equation (19) is a binomial coefficient and hence by a standard 

result in Number Theory (for example, see Hardy and Wright [10], Theorem 73) it 

must be an integer.  We know by its definition that b does not have any factors in 

common with either M or nK, so therefore it follows that the final term in brackets on 

the right hand side of equation (19) must also be an integer. Hence it follows that   

 ൣ𝑍ାଵ
಼ெ൧

୫୭ୢெ
= 𝑛𝑀

൫಼
಼ಾశభ൯


൨

୫୭ୢெ
= 0 (20) 

Therefore we have shown that in this case nK+1 must be equal to nK, as required for the 

theorem. 

(c) Suppose finally that K+1 is composite, so that it is not a prime power.  Setting T=1 in 

equation (17), then 

    𝑍
ାଵ

಼ெ =
(಼ெ)



಼
಼ಾశభ


 (21) 

We note that it is possible in (21) that either a or b may be equal to 1; however if a=1 

then b must be composite and if b=1 then a must be composite (since otherwise K+1 

would have only a single prime factor, contradicting the assumption that it is not a 

prime power). By the induction hypothesis, since K+1 is not a prime power, nK must 

clearly be divisible by a.  On the other hand, neither nK nor M can be divisible by b, so 

by an analogous argument to that used in part (b) above, we require the final term in 

brackets on the right hand side of equation (21) to be an integer. Hence it follows that 

    ൣ𝑍ାଵ
಼ெ൧

୫୭ୢெ
= 

಼ெ



൫಼
಼ಾశభ൯


൨

୫୭ୢெ
= 0 (22) 
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Therefore we have shown that in this case nK+1 must be equal to nK, as required for the 

theorem. 

Given that the induction hypothesis holds for K, the combination of the cases (a), (b) and (c) 

above proves the induction hypothesis holds for K+1; we have already shown that it holds for 

K=1 and hence it must hold for all K; this completes the proof of the Theorem.   

For the special case where the modulus is equal to the product of the first s prime numbers 

greater than 1 there is a simpler way of writing the period length, specified in the theorem by 

equations (11) and (12). This is given by the following Corollary 1, where we define Lk to be 

the least common multiple of the first k integers (the use of curly brackets to denote the least 

common multiplier follows the notation adopted by Hardy and Wright [10]) 

 𝐿 = {1,2, … , 𝑘} (23) 

Corollary 1. Let X kn be a k -th order ACORN sequence, as in Theorem 1, and suppose that 

the modulus M is equal to the product of the first s prime numbers greater than 1, ie p1=2, 

p2=3, … ps. 

 𝑀 = ∏ 𝑝
௦
ୀଵ  (24) 

Let Lk be the least common multiple of the first k integers, as defined by equation (23). Then 

for any ps≤k<ps+1 (where ps+1 is the (s+1)-th prime number greater than 1) the sequence X kn 

will have period length equal to 

 𝑃 = 𝑀𝐿 (25) 

Proof 

The conditions of the Corollary 1 satisfy the conditions of Theorem 1 with the added 

restriction that the primes qr, r=1,…,s defined in the theorem are required to be the first s 

prime numbers greater than 1, thus qr=pr for each r. The Corollary will be proven provided it 

can be established that 

 𝐿 = ∏ (𝑝)ೝ௦
ୀଵ  (26) 

where for each r, ir is the largest integer such that 

 (𝑝)ೝ ≤ 𝑘 (27) 

This follows immediately from the definition of the least common multiple of k integers as 

the smallest number that is divisible by each of those k integers: first, Lk must be divisible by 

each of the terms in the product on the right hand side of equation (26), since by equation 
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(27) each such term is an integer less than or equal to k; secondly, every integer less than or 

equal to k can be written as a product of powers of the pr, with the power of pr being less than 

or equal to the corresponding ir (since otherwise this would require the integer in question to 

be greater than k).           

5 PRACTICAL IMPLICATIONS OF PERIODICITY RESULTS 

In existing implementations of the ACORN random number generator it was convenient to 

select a modulus 230p for a small integer value of p giving a sequence with period length in 

each case being a small multiple of the modulus. In practice p=1 gives rise to sequences that 

are too short for use in some practical applications, so p=2 was the preferred choice in early 

implementations; larger values of p have also been considered and in recent and ongoing 

work [8,9] a choice of p=4 appears to give a very good approximation to uniformity for an 

extremely wide choice of initialisations while also providing a good balance between period 

length and speed of execution. These choices of modulus also give rise to a particularly 

simple implementation of the ACORN algorithm in any high-level programming language 

(see [3] for an example of an implementation in Fortran for the case p=2, which generalises 

easily to arbitrary p).  The results obtained in Theorem 1 can be applied to derive the exact 

period length for ACORN random number generators (of any given order k) with modulus 

equal to 230p for any integer value of p and having an odd value for the seed, as shown in 

Table 1 for some example cases. 

 
Table 1 Period length for ACORN generators of order up to 63 and for modulus 260 (p=2) or 2120 (p=4), calculated 
using Theorem 2 assuming an odd seed value. 

 Modulus M=260 Modulus M=2120 

Order k=1 260 2120 

Order k=2,3 261 2121 

Order k=4,5,6,7 262 2122 

Order k=8,9,10,…,15 263 2123 

Order k=16,17,18,…,31 264 2124 

Order k=32,33,34,…,63 265 2125 

 



Periodicity of ACORN Sequences                  REAMC Report-001(2020) 
Issue 1, March 2020 

Copyright © 2020 REAMC Limited. 11  

As demonstrated by the Theorem, choosing a composite modulus can give rise to sequences 

with longer period length for similar magnitude of the modulus.  However it should be noted 

that in general, despite the increase in period length, the resulting sequences are more 

constrained by the requirement of no common factors between the seed and modulus and also 

do not have the same uniformity properties as do sequences with modulus a power of 2.  For 

example, choosing the modulus equal to a product of different prime factors (each raised to 

the power 1) leads to ACORN sequences that consistently fail on a few of the standard tests 

of uniformity that are included in [7] (this remains the case irrespective of how few or how 

many different prime factors are included in the product) and such choices of composite 

modulus should therefore be avoided for uniform pseudo-random number generation. 

The results obtained in Theorem 1 for composite modulus and also the special case in 

Corollary 1 are therefore primarily of interest as a mathematical generalisation of the earlier 

Conjecture and are not being proposed or recommended as an alternative route for uniform 

pseudo random number generation.  ACORN sequences with modulus a sufficiently large 

power of 2 remain the preferred choice in ACORN random number generators.  

6 CONCLUSIONS 

ACORN sequences with modulus a sufficiently large power of 2 have been demonstrated in 

previous papers to be a reliable source of uniformly distributed pseudo-random numbers 

which perform well on the standard tests for uniformity. 

The main result in this paper is a Theorem which allows the period length to be calculated for 

any ACORN sequence having arbitrary modulus, provided only that the seed and modulus 

are relatively prime.  For modulus a power of 2 and an odd value for the seed, the Theorem 

can be applied to determine the period length of the resulting ACORN sequence. 

It is worth noting that in those special cases where the modulus is either prime or equal to a 

prime number raised to an integer power, this Theorem reduces precisely to a previously 

unproven Conjecture which was originally proposed (in 2008) by Wikramaratna [3]. 

The Theorem goes further, extending the result to composite modulus; however it should be 

noted that in general, despite the increase in period length, ACORN sequences with 

composite modulus may not pass all of the standard tests for uniformity and using a 

composite modulus is therefore not considered appropriate for a source of uniformly 

distributed pseudo random numbers.   
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