REAMC
Limited

Statistical Testing of Additive Congruential Random Number
(ACORN) Generators

REAMC
Limited

NOAWINEINEICINE

REAMC Limited (Reservoir Engineering and Applied Mathematics Consultancy)

4 N

INTRODUCTION

ACORN generators represent an approach to generating uniformly distributed pseudo-random
numbers which is straightforward to implement for arbitrarily large order k and modulus M=23%
(integer t). They give long period sequences which can be proven theoretically to approximate to
uniformity in up to k dimensions.

ACORN GENERATOR

The ACORN pseudo-random number generator was first discovered in the mid-1980s and
published in 1989 [1].

Let k be a finite, strictly positive integer. The k -th order Additive Congruential Random Number
(ACORN) generator is defined from an integer modulus M, an integer seed Y 9, satisfying

0 <Y9% <M and an arbitrary set of k integer initial values Y "o, m = 1, ..., k, each satisfying

0 <YM, <M by the equations

Yo =v% . n>1 (1)
Y™, =Y 4+ Y™ lnody "=1m=1, .k (2)
where [Y ]..q Means the remainder on dividing Y by M.
Finally, the sequence of numbers Y X can be normalised to the unit interval by dividing by M
anz [Ykn/M] nz1 (3)

It turns out [2, 3, 4, 5] that the numbers X ¥ defined by equations (1) - (3) approximate to being
uniformly distributed on the unit interval in up to k dimensions, provided a few simple
constraints on the initial parameter values are satisfied

* modulus M needs to be a large integer (typically a prime power, with powers of 2 offering the
most straightforward implementation); increasing modulus leads to improved statistical
performance

« seed Y % and modulus chosen to be relatively prime (which means that their greatest common
divisor is 1; for M a power of two this requires only that the seed is odd)

 Initial values Y Mo, m =1, ..., k can be chosen arbitrarily
The period length of resulting ACORN sequence can be shown to be a multiple of the modulus.

IMPLEMENTATION

The ACORN generator Is straightforward to DOUBLE PRECISION FUNCTION ACORNJ (XDUM)
Implement in a few tens of lines In high-level

computer languages such as Fortran or C.

The following example is In Fortran; with 32-
bit integers (as shown) it allows a modulus up
to 2°9; by using 64-bit integers it would allow 1
modulus up to 212° with minimal modification
to the source code.
IXV2 (I+1)=IXV2 (I+1)-MAXJINT

This 1s simplest and most easily understood
: - . o 1 1)= 1 1)+1
implementation; significantly faster mpe (THISIRVL I
Implementation Is possible while still IF (IXVL1(I+1).GE.MAXJNT)

. . . 1 IXV1 (I+1)=IXV1 (I+1)-MAXJINT
producing identical sequences for any SR
specified initialisation. It can be extended to GBI E A0 (BN 08 ) |

. 1 +DBLE (IXV2 (KORDEJ+1) ) /MAXJNT) /MAXJNT

allow larger order by straightforward
modifications to the common block. END

ACORN GENERATOR
MODULUS =< 2460, ORDER =< 12

o ONONe

IMPLICIT DOUBLE PRECISION (A-H,O-2)
PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO2/ KORDEJ
 MAXJNT, IXV1 (MAXOP1) , IXV2 (MAXOP1)

DO 7 I=1,KORDEJ

IXV1 (I+1)=(IXV1 (I+1)+IXV1(I))

IXV2 (I+1)=(IXV2 (I+1)+IXV2(I))

IF (IXV2(I+1).GE.MAXJNT) THEN

RETURN

After appropriate initialisation of the common block, each call to the function ACORNJ
generates a single variate drawn from a uniform distribution on the unit interval.

The ACORN generator has been used (alongside the widely-used Mersenne Twister algorithm
[6] and a number of other algorithms that are based on linear congruential generators) by
Numerical Algorithms Group Ltd since the Mark 22 release of their Fortran Numerical Software
Libraries [7] and since the Mark 23 release of their C Numerical Software Libraries [8] as one of
their standard base methods for generating uniformly distributed pseudo-random numbers.

A version of the ACORN algorithm is also included in the GSLIB geostatistical software library,
Deutsch and Journel [9].

PASCAL'S TRIANGLE AND ACORN SEQUENCES

The ACORN generator turns out to have a close link with Pascal’s triangle. Numbering the
diagonals from 0 through k, the terms in the k-th diagonal turn out to be a particular special case
of a k-th order ACORN sequence.

As a result we can show that the sequence

formed by taking the terms in the k-th

diagonal modulo M (where M is a large

power of 2) and dividing by M is

 a periodic sequence whose period Is a
multiple of M

e aseguence which approximates to
uniform distributed in k dimensions.

This is one example of some fascinating
mathematical properties that can be
demonstrated or proved for the ACORN
sequences. Other examples are included in
the references [1, 2, 3, 4, 5].

Underlying illustration of Pascal’s Triangle from
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ACORN Pseudo-random Numbe
Generator (1980s) — turns out to
have close links to Pascal’s triangle
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If M = 25, large s, the sequence % is periodic with long
\-é period (>M); approximates to uniform distribution in k dimensions
on unit interval — an example of ACORN sequence; here with k=3

. THE TestUO1 TEST SUITE h

The TestUO1 package has been described by L’Ecuyer and Simard [10]. They considered the
application of empirical tests of uniformity and randomness to sequences generated by a wide
range of algorithms and developed a comprehensive set of empirical tests that were designed to
detect undesirable characteristics in such sequences. L’Ecuyer and Simard present results of
applying the TestUO1 tests to a large number of different sequences, identifying generators that
pass all of the tests (collectively called the BigCrush test battery), as well as identifying many
generators (including some that are widely used) that have serious deficiencies in respect of
certain specific tests.

Results presented below for ACORN generators (which were not included among generators
considered by L’Ecuyer and Simard) were obtained using the latest version 1.2.3 of TestUO1.
The BigCrush battery of tests calculates 180 different test statistics for each sequence that is
tested, making use of some 23 pseudo-random numbers from each sequence. We follow
L’Ecuyer and Simard in defining a “failure” to be a p-value outside the range [10-1°, 1-10-19] with
a “suspect” value falling in one of the ranges [10-1°, 10-4] or [1-10-4, 1-10-1].

RESULTS AND CONCLUSIONS
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With M=21%0 and k>9, ACORN generators passed all the tests for each of the 7 initialisations;
since each choice of seed gives a different sequence this potentially gives more than 211°
different sequences, each of length at least 2120, which might reasonably be expected to pass all
of the tests in these test suites.

With M=2%0 and k=9, ACORN generators failed on average no more than two of the tests across
the 7 initialisations tested; with M=2% (not shown in the figures) the performance was
Intermediate between the two cases shown with no failures and only occasional suspect values.

This contrasts with corresponding results obtained for the widely-used Mersenne Twister
MT19937 generator, which consistently failed on two of the tests in the BigCrush test suite.

Further, we assert that an ACORN generator might also reasonably be expected to pass any
more demanding tests for p-dimensional uniformity that may be required in the future, simply by
choosing k>p and modulus M=23% for sufficiently large t.
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